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Abstract 

Time-correlated single photon counting has recently been combined with mode- 

locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy 

emissions of single molecules in a flow stream. Maximum likelihood (ML) and least 

squares methods agree and are optimal when the number of detected photons is large 

however, in single molecule fluorescence experiments the number of detected photons 

can be less than 20, 67% of those can be noise and the detection time is restricted to 10 

nanoseconds. Under the assumption that the photon signal and background noise are two 

independent inhomogeneous Poisson processes, we derive the exact joint arrival time 

probability density of the photons collected in a single counting experiment performed in 

the presence of background noise. The model obviates the need to bin experimental data 

for analysis, and makes it possible to analyze formally the effect of background noise on 

the photon detection experiment using both ML or Bayesian methods. For both methods 

we derive the joint and marginal probability densities of the fluorescent lifetime and 

fluorescent emission. The ML and Bayesian methods are compared in an analysis of 

simulated single molecule fluorescence experiments of Rhodamine 1 10 using different 

combinations of expected background noise and expected fluorescence emission. While 

both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, 

the Bayesian methods provide more realistic measures of uncertainty in the fluorescent 

lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in 

fluorescent lifetime estimates in current single molecule flow stream experiments where 

the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be 

automated for applications in molecular biology. 
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Introduction 

In the last six years it has become possible to record temporal data from 

individual fluorescent dye molecules in flow streams and to estimate single molecule 

fluorescent lifetime and energy emissions'. Perfection of this technology should 

significantly enhance the analytic sensitivity of fluoroimmunoassays, capillary zone 

electrophoresis, flow cytometry, DNA fingerprinting, fragment sizing sequencing. 

Proper application of the single molecule fluorescence techniques in these detection 

systems requires accurate assessment of the uncertainty in the measurement of the 

molecule's lifetime and energy emission. As a consequence, there is much interest in 

characterizing the statistical properties of photon data collected in single molecule 

excitation experiments.6~'~' 

2 3 4 5  5 

Hall and Selingerg studied the general problem of decay lifetime estimation and 

derived equations for the maximum likelihood (ML), method of moments and least 

squares (LS) estimations of the parameters in an inhomogeneous Poisson process model 

of photon detection in the absence of background noise. They also reported large sample 

formulae for the variances of these estimators, and showed that the ML estimation 

procedure was the most statistically efficient and that it was also computationally 

tractable. Peck et al. studied single molecule fluorescence detection with the signal and 

background noise processes modelled as two independent homogeneous Poisson 

processes and described an autocorrelation procedure for burst detection. Tellinghuisen 

and Wilkerson' studied the performance of ML and LS methods for estimating 

fluorescent lifetimes using an arrival time model in the case where N ,  the numbers of 

detected photons, is small and T ,  the observation time, is finite. They found that both 

estimates were biased and that the variance of the ML estimate was formally divergent. 

They suggest that the ( N  / N - 1) bias in the reciprocal of the lifetime parameter could be 

easily corrected and that statistical models parameterized in terms of this parameter were 

more analytically tractable. Tellinghuisenlo studied the properties of least squares (LS) 

6 
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techniques for estimating fluorescent lifetimes in the presence of background noise using 

Monte Carlo methods and partial derivative matrices to perform error analyses. He 

reported that background noise reduced the precision in the lifetime estimate by an order 

of magnitude and that this measurement precision could be recovered by incorporating 

into the analysis a model of the background noise derived from the study of the detection 

system studied in the absence of a fluorescent experiment. 

In the study of photon bursts from single Rhodamine 1 10 dye molecules dissolved 

in methanol, Tellinghuisen et al.l0 compared the use of an approximate arrival time plus 

background noise model analyzed with LS methods to an arrival time noise fiee model 

analyzed by ML procedures. In their LS analysis the error in the reciprocal of the lifetime 

parameter exceeded the expected for data collected over an infinite time interval in 

the absence of background noise. Because the model .analyzed with the LS methods 

included background noise and because problems in the parameter estimation could be 

readily diagnosed with contour plots of the minimum x2 function, these authors 

concluded that the LS approach offered the preferred means of analyzing the effect of 

background noise in single molecule fluorescence experiments. 

The principal analytic issues to be addressed are: (1) proper specification of a 

probability model for photon detection from single molecules in the presence of 

background noise; and (2) formulation of a statistical estimation procedure based on that 

model which allows accurate determination of single molecule fluorescent emissions and 

lifetime when emissions are low background noise is significant and the detection 

interval is finite. There is significant evidence to suggest that detection of photon from 

single fluorescent molecule may be modelled a Poisson process.g.6 Therefore, under the 

assumption that the signal and background noise are two independent inhomogeneous 

Poisson processes, we derive the exact joint probability density of photon arrivals in a 

finite time interval from a single fluorescent molecule derive both ML and Bayesian 

procedures for estimating the fluorescence lifetime energy emission and their associated 
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uncertainties in terms of well defined probability densities. We compare the ML and 

Bayesian methods in an analysis of simulated data from Rhodamine 110 for various 

combinations of expected fluorescence emissions and background noise. 

Model Derivation 

We assume that the arrival times of the photorp from a single fluorescent 

molecule are recorded in a finite interval [ O , T J .  Let ti be the arrival time of the ith 

photon, where o < t l ,  ..., < tz < T . We assume that the number of photons detected from the 

fluorescent species is a Poisson process with continuous intensity function h(t) = A=-"', 

for t 2 0 .  The parameter T is the average fluorescent lifetime and A is the number of 
photons detected at time 0 .  Let A(t )=  [ k ( ~ ) d ~ .  The quantity A(T)is the average 

fluorescence emission in the observation interval (0 ,q ., We assume that the number of 

background photons detected is a Poisson process with a continuous intensity function 

q( t ) ,  t 2 0 .  Forms of q(t)  which have been reported include the constant function and a 

function composed of a linear combination of two Gaussian functions, and exponential 
function and a constant. Let Q(t)  = [q(u)du. We assume that q(t)  is known from 

background photon measurements made on the detection system in the absence of the 

fluorescent molecules. We assume also that 

lim q(u)du=m k 

Equation (1) is a technical assumption which ensures that the joint, conditional and 

marginal probability densities of the arrival times are well defined. Under the assumption 

that the fluorescence emission and background noise processes are independent, the 

number of photons arriving from both is a Poisson process with intensity function 

h(t) + q(t). 
11 
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From the derivation in the Appendix, it follows that the joint probability density 

of the photon arrival times is 

(2) 

where t = ( t l ,  ..., t I )* .  

Equation (2) shows that the joint probability density of the photon arrivals may be 

represented without the need to bin the data. The derivation of this equation in the 

Appendix may be viewed as taking the number of bins equal to the number of detected 

photons, placing the ifh photon arrival in a bin of width A t j ,  and letting the widths of all 

bins go to zero. Equation (2) may give the appearance that the ti 's are a collection of 

independent observations on the interval (O,T], however, they are not. Their joint 

probability density is defined on R' subject to the constraint that 0 < tl < t2, .  . . , < tI < T < m. 

Statistical Analysis of Experimental Data 

Maximum Likelihood Approximation of the Fluorescent Lifetime and Energy Emission 

Probability Densities. 

From the joint arrival time density we can estimate T and A by the method 

maximum likelihood. The log likelihood based on the joint arrival time density is 

and the ML estimates can be obtained numerically by finding the values of T and A which 

maximize equation (3). 

Under the assumption that A is large we can derive approximate probability 

be the ML, estimates of T and A respectively and densities for T and A ? Let pn = (?, 
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define x = (z, A ) .  The observed information matrix G is the 2x2 matrix whose elements are 

G11 = 
-a2 log f ( t l ~ ,  A )  

h2 
-a2 l o g f ( i l Z ,  A )  and G~ = -9 l o g f ( 4 % 4  . It fo~~ows 

&.dA dA2 
3 Gl2 =G21= 

fiom the large sample theory of ML estimates that the approximate joint probability 

density of z and A is the Gaussian density defined as 

where v = G-' and lVl is the determinant of V . The marginal probability density of 

j ( ~ l t ) ,  is the Gaussian density with mean .f and variance equal to bl, i.e. the Z,Z element 

of V .  To compute the approximate probability density of A(T), we define the 

transformation 

'='((d =(A;T)) 

P y  = h( ;) ( 5 )  

and its Jacobian 

The determinant of J is I JI = Z(I -e-*") . Applying the change of variables in equation 

(5) to h ( ~ ,  Ali) under the assumption that is A large, shows that the approximate joint 

probability density of z and h(T) is the Gaussian density defined as 
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where x = W J ~ .  The approximate marginal probability density of A(T) is the Gaussian 

density with mean $z‘) and variance z22 . 

Bayesian Estimation of the Fluorescent Lifetime and Energy Emission Probability 

Densities. 

To conduct a Bayesian analysis of the lifetime and energy emission estimation 

problem we assume that knowledge about z and A known prior to the experiment can be 

summarized in terms of a prior probability density.I2 Since the fluorescent lifetime is 

independent of A ,  the number of photons observed at time 0, we write the joint prior 

density of T and A as the product of two locally uniform, prior densities defined 

as f (2, A )  = f (2) f ( A )  where, 

(z2 - z1 I T I 22 

f 0 otherwise 
= 

The values of q , ~ ~ ,  A~  and^^ are defined from known properties of the particular single 

molecule experiment. Applying Bayes theorem equations (2) and (7) yields the joint 

posterior density of 
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where fW = j If(T>f(A)f(tIT, * 

T A  

Equation (7) shows that the locally uniform prior densities can be used to 

constrain the parameter valves to a region in the T - A plane which is physically plausible. 

Equation (8) shows that the uncertainty in the parameter defined by the Bayesian analysis 

is the product of the ranges defined by the prior densities and the uncertainty in or 

information about the parameters derived fkom the experiment, and summarized in the 

likelihood function f ( t l z ,  A )  . That is, the Bayesian analysis combines prior information 

with that collected in the experiment to determine the uncertainty in the model 

parameters. Because the prior density is uniform on the T - A  plane and because the 

likelihood and log likelihood are equivalent summaries of the experimental information, 

then if the experiment contains a lot of information about the model parameters then the 

uncertainty in the model parameters defined by the ML and Bayesian analyses will agree. 

The posterior probability density of the fluorescent lifetime is obtained by 

integrating (8) with respect to A to giving 

Since we are interested in A(T) instead of A we apply the change of variables defined by 

equation (5) and find that the joint posterior probability density of the fluorescent lifetime 

and fluorescent emission is 

The marginal posterior density of h(T) is 
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Equations (9) and (1 1) define the uncertainty in the fluorescent lifetime and energy 

emission respectively in terms of probability densities without having to make large 

sample assumptions. The respective modes, medians and means of fi(W and f i ( ~ ( ~ ) p )  

may be used as point estimates of 7 and A(T) for any set of experimental data t . 

Simulation Study of Rhodamine 110 Single Molecule Fluorescence Detection 

We compared the ML and Bayesian methods in a study of simulated single 

molecule fluorescence experiments for Rhodamine 1 10 assuming an expected fluorescent 

lifetime and detection interval of 4.2 and 10 nanoseconds respectively based on 

Tellinghuisen, et. a1.l' reported background noise fractions as higher as 0.67 in their 

experiments. Therefore, we simulated three levels of expected background noise fraction: 

high = 0.70, moderate = 0.35 and none = 0 combined with each of four levels of expected 

fluorescence emission: low = 19.1, medium =191, moderate =952 and high =3812 

photons 10 nanoseconds. These expected fluorescence emission levels are the values of 

A(T)  obtained with A set respectively to 5, 50,250 and 1000 with z 4 . 2  and T=lO. We 

let q(r) = h, , a constant function, whose value was determined for any given specification 

of the expected background noise fraction and expected fluorescence by the relation 

where nf is the expected background noise fraction and h , ~  = Q( T) . 
For each combination of nf and A( T) we simulated 3 detection experiments (36 in 

total) using the thinning algorithm of Lewis and Shedler.13 ML estimation was carried out 

by a combination quasi-Newton's method and local search procedure to insure that the 

absolute maximum of the likelihood was found in each computation. The Bayesian 

analysis were carried out by rectangular integration procedures. For the Bayesian analysis 
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we took z1 = 0 and z2 = 12 nanoseconds in the prior density forf(z). Given previous 

reports on the fluorescent lifetime of Rhodamine 1 10, it is reasonable to assume that T 

would lie in this interval." For f ( ~ )  we chose four different representations for both 

A~ and depending on value of A used in the simulations (Table 1). 

Table 1 about here 

To assess how closely the Bayesian posterior probability densities deviated from 

Gaussian behavior we report their measures of skewness and kurtosis. The skewness of a 

probability density of a random variable X is the normalized third moment defined as 

E ( X  - p13 / o3 where p is the mean and o2 is the variance. The kurtosis of the probability 

density is the normalized fourth moment defined as ~ ( 3 - p ) ~  /04 -3. The skewness is a 

measure of asymmetry in that if the skewness is >o(<O)  the probability density is right 

(left) skewed and is symmetric if the skewness is zero. The kurtosis measures the 

probability content in the tail of the probability density relative to that in a Gaussian 

density with the same mean and variance. The closer the kurtosis is to zero, then the 

closer the probability density is to a Gaussian density. 

Maximum Likelihood Analysis 

As nfdecreased and efincreased, the precision in both the fluorescent lifetime and 

energy emission estimates increased (Table 2). The CV's of the lifetime and energy 

emission estimates decreased respectively from 58% and 46.8% (nf= 0.70 and ef = 19.1) 

to 2.68% and 1.61% (nf= 0.0 and ef = 3812). In all the simulations the true values of z 

and A(T) are covered by the 0.95 confidence intervals based on the maximum likelihood 

estimates (mean k 2SD). The widths of the 95% confidence intervals (4SD) for z ranged 

from 8.4 11s (nf= 0.35 and ef=  19.1) to 0.44 ns ( nf=O.O and ef = 3812). The absolute 

widths of the 0.95 confidence intervals forA(T) increased with increasing values of A(T) 
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however, the length of the interval as a percentage of A(T) decreased from 93.6% (nf = 

0.70 and ef = 19.1) to 3.3% ( nf ~ 0 . 0  and ef = 3812) , i.e. twice the CV's. Due to their low 

signal to noise ratio the simulations with ef = 19.1 gave point estimates of z which agreed 

least with the intended value of 4.2 ns. The increase in estimation precision of z and 

h(t) with decrease in nf and increase in ef is shown in Figure 1. The estimated joint 

density for nf = 0.35 and ef = 19.1 has approximately 10% of its support on negative 

values of T and A(T) because the Gaussian approximation based on the ML estimates is 

not restricted to positive values (Figure 1A). Across all the simulations the approximate 

joint densities of ? and i ( T )  have slight positive correlations (0.31 to 0.35) for nf = 0.70 

(Figures 1 A, D and G) whereas the two estimates were uncorrelated for nf = 0.0 (Figures 

lC, F and I). 

Table 2 about here. 

Figure 1 about here. 

Bayesian Analysis 

For the Bayesian analysis as nf decreased and ef increased, the precision in both 

the fluorescent lifetime and energy emission estimates also increased (Table 3 and Figure 

2). The CV's of the lifetime and energy emission estimates decreased respectively from 

53.8% and 41.5% (ef= 19.1 and nf = 0.35) to 2.7% and 1.6% (ef= 3812 and nf = 0.0). In 

all the simulations the true values of T and h(T)are covered by the 0.95 credibility 

intervals, Le. the Bayesian equivalent of the 0.95 confidence intervals.12 All the joint 

posterior probability densities for ef =952 and 3812 appeared to be Gaussian: Their plots 

agree with those for the corresponding ML estimates (Figures lG, lH, 11,2G, 2H and 21) 

and their skewness and kurtosis values are all close to zero. Similarly, for the simulations 

in which ef= 191 and nf equal to 0.35 or 0.0, there was good agreement between the ML 

and Bayesian probability density estimates (Figures 1E and lF, and Figures 2E and 2F). 
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between the ML and Bayesian probability density estimates (Figures 1E and lF, and 

Figures 2E and 2F). 

Table 3 about here. 

Figure 2 about here. 

For ef = 19.1 for all values of nf and for ef = 191 and nf = 0.70 the Bayesian 

estimates of the joint probability densities ofz and A(T) are highly non-Gaussian 

(Figures 2A-2D and 2G). The marginal probability densities for A(T) are nearly Gaussian 

for these four combinations of ef and nf and these densities are in very good agreement 

with their ML counterparts (Tables 2, 3 and Figure 3). The non-Gaussian nature of the 

joint posterior probability density stems mostly from the uncertainty in z as shown in 

Figures 2A-2D and indicated by the non-zero values for the skewness and kurtosis 

obtained in these simulations (Table 2). All four of the marginal probability densities of 

T are right skewed, i.e. positive skewness. In the simulations for ef = 19.1 and nf = 0.70 

and 0.35, the uncertainty in z defined by the posterior probability density is due 

primarily to the prior density. The respective 0.95 credibility intervals for z in these two 

simulations extends from 0.14 to 11.4 ns and from 2.3 to 11.7 ns. These findings suggest 

that under these low signal to noise experimental conditions the data contain only 

minimal information about the molecule's fluorescent lifetime. 

Figure 3 about here. 

Discussion 

Our approach provides an exact probability model of the photon arrival times 

observed with background noise and makes explicit the relation between the counting 

process, arrival time and conditional arrival time probability densities. This model avoids 
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the need to bin data and extends the analysis provided [I and [] by making possible ML 

and Bayesian analyses which consider the background noise in the estimation of the 

excited species lifetime and energy emission. Both procedures measure the uncertainty in 

these quantities based on data from the photons collected from single molecule in a single 

experiment. 

Our ML analysis gives explicit formulae for the change in precision of the 

lifetime estimates as a function of the signal intensity, background noise and detection 

interval. ML analysis of experimental data provides the most efficient use of 

experimental information and as such, is the preferred approach provided the ML 

computations are numerically tractable the experiment is highly informative about the 

model parameters relative to the known prior to the experiment. Inferences about 

uncertainty in model parmeters can be made from ML theory as long as the appropriate 

asymptomatic assumptions are satisfied. Contrary to the suggestion by Tellinghuisen et 

al., our results show that ML estimation for single molecule lifetime and energy emission 

and is highly tractable procedure which can be carried out efficiently using a quasi- 

Newton's methods. Hall and Selinger showed that when the observation interval is finite 

the large sample properties of the ML estimate of z and A are not of order I but of order 

A .  Our ML analysis extends their result by showing that the result also hold when the 

data consist of a Poisson signal plus Poisson background noise model observed in finite 

time. 

While the ML and Bayesian procedures will give similar parameter and 

uncertainty estimates when the expected signal intensity is large, our simulation study 

shows that when the number of detected photons is small, the Bayesian procedures 

provide a more reliable uncertainty assessment of uncertainty. The Bayesian procedure 

makes it possible to combine prior information about the most probable range to z and A 

prior to the experiment with the information on these parameters summarized in the 

likelihood. In particular, the Bayesian procedure trades the large sample assumptions 
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required by the ML error analysis for the more realistic one that the fluorescent lifetime 

and energy emission-where the latter is implicitly defined by z and A - lie within given 

intervals. As we have shown, this interval may be specified based on the known 

properties of the experimental paradigm. The Bayesian procedure suggests therefore, a 

preferred alternative when the expected signal intensity is low and as a consequence, the 

large sample assumptions needed to justify the ML analysis cannot be satisfied. 

While either the Bayesian or h4L procedures works well for analyzing 

fluorescence emissions, the Bayesian methods provide more realistic measures of 

uncertainty in the fluorescent lifetimes for any combination of background noise and 

fluorescence emission. The Bayesian methods should provide more realistic assessments 

of uncertainty in fluorescent lifetime estimates in current single molecule flow stream 

experiments where the expected fluorescence emission can be in the low to medium 

range. Both the ML and Bayesian algorithms can be automated for real-time applications. 
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Appendix 

To derive the joint probability density of photon arrival times we consider the 

event that 1 photons arrive in (0, rl at times 0 < tl < t2, ..., < tI 5 T . This probability density 

is defined by the events that no arrivals occur in the intervals (OJlI, (ti +Ati,ti+l] for 

i = 1, ..., 1-1 and (tI + A t I , T ] ,  and that exactly one arrival occurs in each of the intervals 

(ti,ti + ui] for i = l , . . . , ~ .  By the definition of an inhomogeneous a Poisson process the 

following statements describe the probabilities of these events: 

Pr(No arrivul in (0,tll) = exp{- h(u) + q(u)du} 6 
Pr(No arrival in (ti + Ati+l]) = expi- f+' h(u) +q(u)du} 

i+Ati 

The intervals are nonoverlapping and thus, independent by the basic axioms of a Poisson 

process. The joint probability of the events is therefore, 

I 

i=l 
where t = (tl,t2,.. . , tI)T. Dividing both sides by n ~ t ~  and letting Ati + o for each i gives 

the joint probability density of the arrival times 
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for 0 < tl <, . . . , < tI < T , where we used the fact that 

as Ati + 0, for all i. 

Conditional Arrival Time Probability Density 

The observed photon arrival time data may also be analyzed in terms of the 

conditional arrival time probability density. That is, given z photon arrivals detected in 

@,TI , what are the probable locations of the arrivals in that interval? The number of 

photons arriving in (0, T], N(  T )  , is distributed as a Poisson random variable with parameter 

A(T) . From equation (A4) and the properties of a Poisson process the conditional arrival 

time probability density is 

f(t l .c,A,Z)=Pr{O<tl <, ..., < t I  < T a d  N ( T ) = Z } / P r { N ( T ) = Z )  
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In the case where the Poisson intensity parameter is constant and the observation interval 

is divided into k bins, equation (A6) is a k-nominal probability mass function. 

Similarly, the log likelihood for the conditional arrival time density in equation (A6) 

Equation (AS) may also be used for ML estimation of z and A .  
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Figure Legends 

Figure 1. The maximum likelihood estimates of the joint probability densities of 7 and 

b(T). For row one (A, D, G) nf = 0.70, for row two (B, E, H) nf =0.35 and row three (C, 
F, I) nf = 0 .  For column one (A, B, C) ef = 19.1, for column two (D, E, F) ef =191 and 
for column three (G, H, I) ef =952. 

0 

Figure 2. The Bayesian joint posterior probability densities of z and A(T). For row one 
(A, D, G) nf =0.70, for row two (B, E, H) nf =0.35 and for row three (C, F, I) nf =O. For 
column one (A, B, C) ef ~ 1 9 . 1 ,  for column two (D, E, F) ef=191 and column three (G, 
H, I) ef =952. 

Figure 3. The maximum likelihood ( ) and Bayesian (---------- ) marginal 
probability density estimates of z and A(T). Panels A and D, nf =0.70 and ef =19.1; 
Panels B and E, nf =0.35 and ef =191; Panels C and F, nf =O.O and ef =952. 
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